64 research outputs found

    Searching for gravitational wave burst in PTA data with piecewise linear functions

    Full text link
    Transient gravitational waves (aka gravitational wave bursts) within the nanohertz frequency band could be generated by a variety of astrophysical phenomena such as the encounter of supermassive black holes, the kinks or cusps in cosmic strings, or other as-yet-unknown physical processes. Radio-pulses emitted from millisecond pulsars could be perturbed by passing gravitational waves, hence the correlation of the perturbations in a pulsar timing array can be used to detect and characterize burst signals with a duration of O(1-10)\mathcal{O}(1\text{-}10) years. We propose a fully Bayesian framework for the analysis of the pulsar timing array data, where the burst waveform is generically modeled by piecewise straight lines, and the waveform parameters in the likelihood can be integrated out analytically. As a result, with merely three parameters (in addition to those describing the pulsars' intrinsic and background noise), one is able to efficiently search for the existence and the sky location of {a burst signal}. If a signal is present, the posterior of the waveform can be found without further Bayesian inference. We demonstrate this model by analyzing simulated data sets containing a stochastic gravitational wave background {and a burst signal generated by the parabolic encounter of two supermassive black holes.Comment: 13 pages, 10 figure

    Supermassive Black-hole Demographics & Environments With Pulsar Timing Arrays

    Get PDF
    Precision timing of large arrays (>50) of millisecond pulsars will detect the nanohertz gravitational-wave emission from supermassive binary black holes within the next ~3-7 years. We review the scientific opportunities of these detections, the requirements for success, and the synergies with electromagnetic instruments operating in the 2020s.Comment: Submitted to the Astro2020 Decadal Survey. One of 5 core white-papers authored by members of the NANOGrav Collaboration. 9 pages, 2 figure

    Implementation of an efficient Bayesian search for gravitational wave bursts with memory in pulsar timing array data

    Full text link
    The standard Bayesian technique for searching pulsar timing data for gravitational wave (GW) bursts with memory (BWMs) using Markov Chain Monte Carlo (MCMC) sampling is very computationally expensive to perform. In this paper, we explain the implementation of an efficient Bayesian technique for searching for BWMs. This technique makes use of the fact that the signal model for Earth-term BWMs (BWMs passing over the Earth) is fully factorizable. We estimate that this implementation reduces the computational complexity by a factor of 100. We also demonstrate that this technique gives upper limits consistent with published results using the standard Bayesian technique, and may be used to perform all of the same analyses that standard MCMC techniques can perform.Comment: 19 pages, 3 figures, 1 table. Submitted to Astrophysical Journa

    Supermassive Black-hole Demographics & Environments With Pulsar Timing Arrays

    Get PDF
    Precision timing of large arrays (>50) of millisecond pulsars will detect the nanohertz gravitational-wave emission from supermassive binary black holes within the next ~3-7 years. We review the scientific opportunities of these detections, the requirements for success, and the synergies with electromagnetic instruments operating in the 2020s
    • …
    corecore